

DIGITAL COMMUNICATION LAB

MANUAL

Prepared by: Ms. Khuong T. T. Pham

 Date: January, 2018

Lab Manual of Analog & Digital Communication

EXPERIMENT # 1

MATLAB Basics for Communication System Design

Objective

 To understand the use of MATLAB for solving communication engineering
problems.

 Learn the basics of MATLAB as used in Analogue Communication.
 To develop understanding of MATLAB environment, commands and syntax.

MATLAB

MATLAB is a powerful tool that is utilized by the engineers and others professionals in
development and testing of various projects. It is versatile software, with the help of which
you can solve and develop any sort of engineering problem. The name MATLAB stands for
MATRIX LABORAORY. All the work done in MATLAB is basically in the form of
matrices. Scalars are referred as 1-to-1 matrix and vectors are matrices having more than 1
row and column. MATLAB is programmable and have the same logical, relational,
conditional and loop structures as in other programming languages, such as C, Java etc. It’s
very easy to use MATLAB, all we need is to practice it and become a friend of it.

Summary:

 Scalars
 Vectors
 Matrices
 Plotting
 m-files
 functions

Getting Started:

a) Go to the start button, then programs, MATLAB and then start MATLAB. It is

preferred that you have MATLAB2015a. You can then start MATLAB by double

clicking on its icon on Desktop, if there is any.

b) The Prompt:

>>

The operator shows above is the prompt in MATLAB. MATLAB is interactive

language like C, Java etc. We can write the commands over here.

c) In MATLAB we can see our previous commands and instructions by pressing the

up key. Press the key once to see the previous entry, twice to see the entry before

that and so on. We can also edit the text by using forward and back-word keys.

Help in MATLAB

In order to use the built-in help of the MATLAB we use the help keyword. Write it on the
prompt and see the output.

>> help sin

Also try

>> lookfor sin

Scalars

A scalar is a single number. A scalar is stored in the MATLAB as a 1 x 1 matrix. Try these
on the prompt.

>> A = 2;

>> B = 3;

>> C = A^B

>> C = A*B

Try these instructions as well

>> C = A+B

>> C = A-B

>> C = A/B

>> C = A\B

Note the difference between last two instructions.

Try to implement these two relations and show the result in the provided space

a) 25 (31/3) + 2 (2+92) = _______________________

b) 5x3 + 3x2 + 5x + 14 for x = 3 is _______________________

Vectors
Vectors are also called arrays in MATLAB. Vectors are declared in the following format.
>> X = [1 2 3 4]

>> Y = [2 5 8 9]

Try these two instructions in MATLAB and see the result

>> length (X) = __________

>> size (X) = ___________

What is the difference between these two?

__

Try these instructions and see the results.

>> X.*Y = __________________

>> X.^Y = __________________

>> X+Y = __________________

>> X-Y = __________________

>> X./Y = __________________

>> X’ = __________________

Also try some new instructions for this like and notice the outputs in each case.

>> ones (1,4)

>> ones (2,4)

>> ones (4,1)

>> zeros (1,4)

>> zeros (2,4)

There is an important operator, the colon operator (:), it is very important operator and

frequently used during these labs. Try this one.

>> X = [0:0.1:1]

Notice the result. And now type this

>> length (X)

>> size (X)

What did the first and second number represent in the output of last instruction?

__

__

Now try this one.

Lab Manual of Analog & Digital Communication

>> A= [ones(1,3), [2:2:10], zeros(1,3)] What is the length and size of this?

>> Length = ____________________

Size = ____________________

Try ‘help ones’ and ‘help zeros’ as well, and note down its important features.

MATRICES

Try this and see the output.

>> A = [1 2 3;4 5 6;7 8 9]

>> B = [1,2,3;4,5,6;7,8,9]

Is there any difference between the two? Try to implement 2-to-3 matrix and 3-to-2 matrix.

Also take help on mod, rem, det, inv and eye and try to implement them. Try to use

length and size commands with these matrices as well and see the results.

Try to solve these.

1. 6x + 12y + 4z = 70

7x – 2y + 3z= 5

2x + 8y -9z = 64

2. A = [2 3 4 5; 1 8 9 0; 2 3 1 3; 5 8 9 3]

Solve 6A – 2I + A2 =

PLOTTING
Plotting is very important as we have to deal with various type of waves and we have to view
them as well.
Try these and have a look on the results.
>> x = [0:0.1:10];
>> y = sin (x);
>> z = cos (x);
>> subplot (3,1,1);
>> plot (x,y);
>> grid on;
>> subplot (3,1,2);
>> plot (x,z);
>> grid on; hold on;
>> subplot (3,1,3);

Lab Manual of Analog & Digital Communication

>> stem (x,z);
>> grid on;
>> hold on;
>> subplot (3,1,3);
>> stem (x,y, ,'r');
Take help on the functions and commands that you don’t know. See the difference

between the stem and plot.

See help on plot, figure, grid, hold, subplot, stem and other features of it.

Figure 1.1

Lab Manual of Analog & Digital Communication

M-FILES

MATLAB can execute a sequence of statements stored in disk files. Such files are called M-

files because they must have the file type ‘.m’. Lot of our work will be done with creation of

m-files.

There are two types of m-files: Script and function files.

Script Files

We can use script files in order to write long programs such as one on the previous page.

A script file may contain any command that can be entered on the prompt. Script files can

have any name but they should be saved with “.m” extension. In order to excurse an m-file

from the prompt, just type its name on the prompt. You can make an m-file by typing edit

on the prompt or by clicking on the file then new and m-file. See an example of m-file.

Write it and see the results.

% This is comment
% A comment begins with a percent symbol
% The text written in the comments is ignored by the MATLAB

% comments in your m-files.

clear;
clc;
x = [0:0.1:10];
y = sin (x);

subplot (2,2,1);

plot (x,y, ,'r');

grid on;

z = cos (x);

subplot (2,2,2);

plot (x,z);

grid on;
w = 90;
yy = 2*pi*sin

(x+w)

subplot (2,2,3);

plot (x,yy);
grid on;
zz = sin (x+2*w);

subplot (2,2,4);

stem (x,zz, ,'g');

hold on;
stem (x,y, ,'r');

grid on;

Lab Manual of Analog & Digital Communication

Figure 1.2

Function Files

MATLAB have many built-in functions including trigonometry, logarithm, calculus and

hyperbolic functions etc. In addition we can define our own functions and we can use built-

in functions in our functions files as well. The function files should be started with the

function definition and should be saved with the name of function. The general format of

the function file is

Function [output_variables] = function name (input_variables)

See the following example and implement it.

% this is a function file

% this function computes the factorial of a number function [y] = my_func (x)

y = factorial (x);

POST LAB

Try to develop a function that will compute the maximum and minimum of two numbers.

Lab Manual of Analog & Digital Communication

Experiment # 2

Communication Signals: Generation and Interpretation

Objective

 To the use of MATLAB for generation of different signals important in
communication theory.

 Learn the basics of signals and its operations as used in Analogue Communication.
 To develop understanding of communication signals and their properties.

Generation of Signals

Signals are represented mathematically as a function of one or more independent variables.
We will generally refer to the independent variable as time. Therefore we can say a signal is
a function of time. Write these instructions in m-file as execute to see the result.

Sinusoidal Sequence:

% Example 2.1
% Generation of sinusoidal signals
% 2sin(2πτ-π/2)
t=[-5:0.01:5];
x=2*sin((2*pi*t)-(pi/2));
plot(t,x)
grid on;
axis([-6 6 -3 3])
ylabel ('x(t)')
xlabel ('Time(sec)')
title ('Figure 2.1')

Figure 2.1

See the output, change the phase shift value and observe the differences.

Lab Manual of Analog & Digital Communication

Discrete Time Sequences:

See the example below:
% Example 2.2
% Generation of discrete time signals
n = [-5:5];
x = [0 0 1 1 -1 0 2 -2 3 0 -1];
stem (n,x);
axis ([-6 6 -3 3]);
xlabel ('n'); ylabel
('x[n]'); title
('Figure 2.2');

Figure 2.2

Unit Impulse Sequence:

A unit impulse sequence is defined as

Delta (n) = 1 n = 0

 = 0 n ≠ 0

We are making a function named imseq and we further use this function in next experiments
of this lab. The MATLAB code is given below:

function [x,n] = impseq(n0,n1,n2)

% Generates x(n) = delta (n-n0); n1<=n,n0 <= n2
% x[x,n] = imseq(n0,n1,n2)
% n0 = impulse position, n1 = starting index, n2 = ending index
If ((n0 < n1) | (n0 > n2) | (n1 > n2))

Error('arguments must satisfy n1 <= n0 <=
n2') end
n = [n1:n2];
% x = [zeros(1,(n0-n1)),1,zeros(1,(n2-n0))];

x = [(n-n0) == 0];

Lab Manual of Analog & Digital Communication

Unit Step Sequence:

It is defined as

u(n) = 1 n ≥ 0

 0 n ≤ 0

The MATLAB code for stem sequence function is given below:

function [x,n] = stepseq(n0,n1,n2)
% Generates x(n) = u(n-n0); n1 <= n, n0<=n2
% [x,n] = stepseq(n0,n1,n2)
if ((n0 < n1) | (n0 > n2) | (n1 > n2))

error('arguments must satisfy n1 <= n0 <= n2')
end
n = [n1:n2];
% x = [zeros(1,(n0-n1)),ones(1,(n2-n0+1))];
x = [(n-n0) >= 0];

Real Valued Exponential Sequence:
It is define as:

x (n) = an, for all n; a € Real numbers

We require an array operator “ .^ ” to implement a real exponential sequence. See the
MATLAB code below

>> n = [0:10];

>> x = (0.9).^n;

Observe the result

Complex Valued Exponential Sequence:

It is define as:

x(n) = e (a + jb) n , for all n

Where a is called the attenuation and b is the frequency in radians. It can be implemented by
following MATLAB script.

>> n = [0:10];
>> x = exp ((2+3j)*n);

Random Sequence:

Many practical sequences cannot be described by the mathematical expressions like above,
these are called random sequences. In MATLAB two types of random sequences are
available. See the code below:

>> rand (1,N)

Lab Manual of Analog & Digital Communication

>> randn (1,N)

The above instruction generates a length N random sequence whose elements are uniformly
distributed between [0,1]. And the last instruction, randn generates a length N Gaussian
random sequence with mean 0 and variance 1. Plot these sequences.

% example 2.3

%Generation of random sequence
n = [0:10];
x = rand (1, length (n));
y = randn (1, length (n));
plot (n,x) ;
grid on;
hold on;
plot(n,y,'r');
ylabel ('x & y')
xlabel ('n')
title ('Figure 2.3')

Figure 2.3

Periodic Sequences:

A sequence is periodic if it repeats itself after equal interval of time. The smallest interval is
called the fundamental period. Implement code given below and see the periodicity.

% Example 2.4

% Generation of periodic sequences

Lab Manual of Analog & Digital Communication

n = [0:4];
x = [1 1 2 -1 0];
subplot (2,1,1);
stem (n,x);
grid on;
axis ([0 14 -1 2]);
xlabel ('n');
ylabel ('x(n)');
title ('Figure 2.4(a)');
xtilde = [x,x,x];
length_xtilde = length (xtilde);
n_new = [0:length_xtilde-1];
subplot (2,1,2);
stem (n_new,xtilde,'r');
grid on;
xlabel ('n');
ylabel ('perodic x(n)');
title ('Figure 2.4(b)');

Figure 2.4

SIGNALS OPERATIONS:

Signal Addition

This is basically sample by sample addition. The definition is given below:

{x1(n)} + {x2(n)} = {x1(n) + x2(n)}

Lab Manual of Analog & Digital Communication

The length of x1 and x2 should be equal. See the MATLAB code below:

function [y,n] = sigadd(x1,n1,x2,n2)

% implement y(n) = x1(n) + x2 (n)

% [y,n] = sigadd (x1,n1,x2,n2)

% y = sum sequence over n, which include n1 and n2

% x1 = first sequence over n1

% x2 = second sequence over n2 (n2 can be different from n1)

n = min(min(n1),min(n2)): max(max(n1),max(n2)); %duration of y(n)

y1 = zeros(1,length(n)); % initialization

y2 = y1;

y1(find((n>=min(n1))&(n<=max(n1))==1))=x1; % x1 with duration of y

y2(find((n>=min(n2))&(n<=max(n2))==1))=x2; % x2 with duration of y

y = y1 + y2;

See example of signal addition below

% Example 2.5

% signal addition using sigadd function

clear;
clc;
n1 = [0:10];
x1 = sin (n1);
n2 = [-5:7];
x2 = 4*sin(n2);
[y,n] = sigadd(x1,n1,x2,n2);
subplot (3,1,1);
stem (n1,x1);
grid on;
axis ([-5 10 -5 5]);
xlabel ('n1'); ylabel ('x1(n)');
title ('1st signal');
subplot (3,1,2);
stem (n2,x2);
grid on; hold on;
axis ([-5 10 -5 5]);

xlabel ('n2'); ylabel ('x2(n)');
title ('2nd signal');
subplot (3,1,3); stem (n,y,'r');
grid on;

Lab Manual of Analog & Digital Communication

axis ([-5 10 -5 5]);
xlabel ('n'); ylabel ('y(n)');
title ('Added Signals');

Figure 2.5

Signal Multiplication:

The multiplication of two signals is basically sample by sample multiplication or you can say
dot multiplication. By definition it is

{x1(n)} . {x2(n)} = {x1(n)x2(n)}

It is implemented by the array operator ‘ .* ‘ that we studied in last lab. A signal
multiplication function is developed that is similar to the sigadd function. See the code
below:
 function [y,n] = sigmult (x1,n1,x2,n2)

% implement y(n) = x1(n) * x2 (n)

% [y,n] = sigmult (x1,n1,x2,n2)

% y = product sequence over n, which include n1 and n2

% x1 = first sequence over n1

% x2 = second sequence over n2 (n2 can be different from n1)

n = min(min(n1),min(n2)): 0.1 : max(max(n1),max(n2)); %duration of y(n)

Lab Manual of Analog & Digital Communication

y1 = zeros(1,length(n)); % initialization

y2 = y1;

y1(find((n>=min(n1))&(n<=max(n1))==1))=x1; % x1 with duration of y

y2(find((n>=min(n2))&(n<=max(n2))==1))=x2; % x2 with duration of y

y = y1 .* y2;

See the example below:

% Example 2.6

% signal multiplication using sigmult function

clear;
clc;
n1 = [0:0.1:10];
x1 = sin (n1);
n2 = [-5:0.1:7];
x2 = 4*sin (n2);
[y,n] = sigmult(x1,n1,x2,n2);
subplot (3,1,1);
stem (n1,x1);
grid on;
axis ([-5 10 -5 5]);
xlabel ('n1');
ylabel ('x1(n)');
title ('1st signal');
subplot (3,1,2);
stem (n2,x2);
grid on;
hold on;
axis ([-5 10 -5 5]);
xlabel ('n2');
ylabel ('x2(n)');
title ('2nd signal');
subplot (3,1,3);
stem (n,y,'r');
grid on;
axis ([-5 10 -5 5]);
xlabel ('n');
ylabel ('y(n)');
title ('Multiplied Signals');

Lab Manual of Analog & Digital Communication

Figure 2.6

POST LAB: (please send to email: phamthaokhuong@gmail.com)

Write MATLAB code to plot these signals:

a. x [n] = 2sin (3n) + 2cos (3n)

b. x [n] = u[n] + 4cos (3n)

c. x [n] = n[u(n) – u(n-10)] + 10e-0.3(n-10)[u(n-10)-u(n-20)]

You are not allowed to multiply impulse sequences with a number. Implement this by using
impseq, stepseq and sigadd functions.

Lab Manual of Analog & Digital Communication

Experiment # 3

Communication Signals: Operations

Objective

 To learn the use of MATLAB for different operations on signals.
 To develop a thorough understanding of communication signals and their basic

operations as used in Analogue Communication.

SUMMARY

 Signal operations (Scaling, Shifting, Folding, Sample Summation, Sample product,
Energy, Even and Odd sequences, Convolution)

SIGNAL OPERATIONS:

1. Scaling:

In this operation the samples of the signal is multiplied by a scalar α. The
mathematical operator * is used for the implementation of the scaling property.

α{x(n)} = { α x(n)}

>> [x,n] = stepseq (-1,-5,5);

>> a = 2;

>> y = a*x;

>> subplot (2,1,1);

>>stem (n,x);grid on;

>> subplot (2,1,2);

>> stem (n,y, 'r');

>> grid on;

2. Shifting

In this operation, each sample of the signal is shifted by k to get a shifted

signal. By definition: y(n) = {x (n-k)}

In this operation there is no change in the array or vector x, that contains the samples of
the signal. Only n is changed be adding k to each element. The function is given below:

function [y,n] = sigshift (x,m,n0)

% implement y(n) = x(n-n0)

Lab Manual of Analog & Digital Communication

% x = samples of original signal

% m = index values of the signal

% n0 = shift amount , may be positive or negative

% [y,n] = sigshift(x,m,n0)

n = m+n0;

y = x;

See the example of above function:

% Example 3.1

% This example demonstrate the use of stepseq, sigshift, sidadd & sigmult

function clc; clear;

%--

[x,n] = stepseq (0,-

10,10); subplot (3,2,1);

stem (n,x);

axis ([-12 12 0

3]); grid on;

xlabel ('n');

ylabel

('x(n)');

title ('Original Signals');

%--

[y1,n1] = sigshift(x,n,2.5);

subplot (3,2,2);

stem (n1,y1); axis ([-12 12 0 3]); grid on;

xlabel ('n');

ylabel

('y1(n)');

title ('Shifted signal,x(n-2.5)');

Lab Manual of Analog & Digital Communication

%---

[y2,n2] = sigshift (x,n,-2.5);

subplot (3,2,4);

stem (n2,y2);

axis ([-12 12 0 3]);

grid on;

xlabel ('n');

ylabel ('y2(n)');

title ('Shifted signal,x(n+2.5)');

%---

[y_add,n_add] = sigadd(y1,n1,y2,n2);

subplot (3,2,6);

stem (n_add,y_add,'r');

axis ([-12 12 0 3]);

grid on;

xlabel ('n');

ylabel ('y1(n) + y2(n)');

title ('Added Signal');

%---

[y_mul,n_mul] = sigmult(y1,n1,y2,n2);

subplot (3,2,5);

stem (n_mul,y_mul,'k');

axis ([-12 12 0 3]);

grid on;

xlabel ('n');

ylabel ('y1(n) * y2(n)');

title ('Multiplied Signal');

%---

Lab Manual of Analog & Digital Communication

Figure 3.1

3. Folding:

In this operation each sample of x(n) is flipped around n=0 to obtain a folded

signal y(n). y (n) = {x(-n)}

In MATLAB, this function is implemented by using a built-in function fliplr(x) and –
fliplr(x). Its implementation is given below:

function [y,n] = sigfold(x,n)

% implements y(n) = x(-n)

% [y,n] = sigfold(x,n)

% x = samples of the original signal

% n = indexes of the original signal

y = fliplr(x);

n = -fliplr (n);

Do its example by yourself from any example signals.

Page | 62

Lab Manual of Analog & Digital Communication

4. Sample Summation:

This operation is different from sigadd function. In this operation we add all the sample

values of any signal x(n) between any two of its index values. By definition

∑ x(n) = x(n1) +………+x(n2)

In MATLAB it is implemented by the sum(x(n1:n2)) command. See the code below for the
demonstration of above function.

>> [x,n] = stepseq (5,0,10)

>> sum(x(2:7))

5. Sample Product:

This operation also differs from the sigmult function. It implies the sample values over the
range n1:n2. It is implemented by the prod(x(n1:n2)). See the code below.

>> x = [0 1 2 3 4 5]

>> prod(x(2:5))

6. Energy:

The energy of any signal x is computed by the mathematical relation:

Ex = ∑ x(n) x*(n) = ∑│x(n)│2

Where the subscript * is used for complex conjugate of the signal x. The energy of the finite
duration signal is computed in MATLAB as.

>> Ex = sum (x.*conj(x));

Or

>> Ex = sum (abs(x).^2);

7. Even and Odd Sequence:

A real valued sequence xe(n) is called even if the following condition satisfies.

xe(-n) = xe(n)

Similarly a signal is said to be an odd signal if

xo(-n) = -xo(n)

See the example below:

% example 3.2

% Generation of even and odd signals

n1 = [0:0.01:1];

Lab Manual of Analog & Digital Communication

x1 = 2*n1;

n2 = [1:0.01:2];

x2 = -2*n2+4;

n = [n1,n2];

x = [x1,x2];

%Even Signal

[xe,ne] = sigfold(x,n);

%Plotting of original signal

subplot (3,1,1);

plot (n,x);

axis ([-4 4 0 2.5]);

grid on;

%Plotting of original signal + even signal

subplot (3,1,2);

plot (n,x/2,ne,xe/2);

axis ([-4 4 0 2.5]);

grid on;

% Plotting of original signal + odd

signal xo = -xe;

no = ne;

subplot (3,1,3);

plot (n,x/2,no,xo/2);

axis ([-4 4 -2.5 2.5]);

grid on;

Lab Manual of Analog & Digital Communication

Figure 3.2

The above example shows to develop the even and odd signals from a given signal. Now we
are going to develop a function to compute the even and odd signals for ourselves. See the
code of function file below:

function [xe,xo,m] = evenodd (x,n)

% Decomposes a real function into its even and odd parts

% [xe,xo,m] = evenodd(x,n)

% xe = even signal

% xo = odd signal

% m = indexes

% x = original signal

% n = indexes for original signal

if any(imag(x)~=0)

error(‘x is not a real sequence’)

end

m = -fliplr(n);

m1 = min([m,n]);

m2 = max([m,n]);

m = m1:m2;

nm = n(1)-m(1);

Lab Manual of Analog & Digital Communication

n1 = 1:length(n);

x1 = zeros(1,length(m));

x1(n1+nm) = x;

x = x1;

xe = 0.5*(x+fliplr(x));

xo = 0.5*(x-fliplr(x));

Now change the example 3.2 code to implement the same example with this

function.

8. Convolution:

The convolution is very important operation as far the system as their impulse responses are
concern. It is mathematically defines as:

y (n) = x(n) * h(n)

Where h(n) is the impulse response of the system. The above definition is best depicted by
the following diagram.

In MATLAB convolution is implemented by the following instructions.

>> x = [1 5 3 9 1 2 3 8 5 -3 0 4];

>> h = [1 0 2 3];

>> y = conv(x,h);

A function is developed which will evaluate convolution in a more precise form and also
calculate the indexes to help us plot the sequences.

function [y,ny] = conv_m(x,nx,h,nh)

% Modified convolution routine for signal processing

% [y,ny] = conv_m(x,nx,h,nh)

% [y,ny] = convolution result

% x = original signal

% nx = index values

% h = impulse response signal

% nh = index values for impulse response

nyb = nx(1) + nh(1);

Lab Manual of Analog & Digital Communication

nye = nx(length(x)) + nh(length(h));

ny = [nyb:nye];

y = conv(x,h);

POST LAB (please send to my email before next class)

a. x(n) = u(n) – u(n-5). Decompose into even and odd components and plot them.

b. n = [-2:2]

x1 = [3,2,1,-2,-3];

x2 = [1,1,1,1,1]

Implement y = x1*x2

Lab Manual of Analog & Digital Communication

Experiment # 4

Introduction to Amplitude Modulation (Simulink Implementation)

Objective

 To identify the spectrum analyzer as used in frequency domain analysis
 To identify various types of linear modulated waveforms in time and

frequency domain representation
 To implement theoretically functional circuits using the Communication Module

Design System (CMDS)

Spectrum Analyzer and Function Generator

This section deals with looking at the spectrum of simple waves. We first look at the
spectrum of a simple sine wave

.
To start Simulink: Start MATLAB then type simulink on the command line. A
Simulink Library Window opens up as shown in figure 13.1.

Figure 4.1

Spectrum of a simple sine wave: - Figure 13.2 shows the design for viewing the spectrum of
a simple sine wave.

Lab Manual of Analog & Digital Communication

Figure 4 .2

Figure 4.3 shows the time-domain sine wave and the corresponding frequency domain is
shown in figure 4.4. The frequency domain spectrum is obtained through a buffered-FFT
scope, which comprises of a Fast Fourier Transform of 128 samples which also has a
buffering of 64 of them in one frame. The property block of the B-FFT is also displayed in
figure 4.5.

Figure 4.3

Lab Manual of Analog & Digital Communication

Figure 4.4

This is the property box of the Spectrum Analyzer

Figure 4.5

Lab Manual of Analog & Digital Communication

From the property box of the B-FFT scope the axis properties can be changed and the Line
properties can be changed. The line properties are not shown in the above. The Frequency
range can be changed by using the frequency range pop down menu and so can be the y-axis
the amplitude scaling be changed to either real magnitude or the dB (log of magnitude) scale.
The upper limit can be specified as shown by the Min and Max Y-limits edit box. The
sampling time in this case has been set to 1/5000.

Note: The sampling frequency of the B-FFT scope should match with the sampling time of
the input time signal.

Also as indicated above the FFT is taken for 128 points and buffered with half of them for an
overlap.

Calculating the Power:
The power can be calculated by squaring the value of the voltage of the spectrum analyzer.

Note: The signal analyzer if chosen with half the scale, the spectrum is the single-sided
analyzer, so the power in the spectrum is the total power.

Similar operations can be done for other waveforms – like the square wave, triangular. These
signals can be generated from the signal generator block.

II. Waveform Multiplication (Modulation)

The equation y = km cos2(2π (1,000)t) was implemented as in fig. 1B peak to peak voltage of

the input and output signal of the multiplier was measured. Then km can be computed as

The spectrum of the output when km=1 was shown below:

Figure 4.6

Lab Manual of Analog & Digital Communication

The following figure demonstrates the waveform multiplication. A sine wave of 1 kHz is
generated using a sine wave generator and multiplied with a replica signal. The input signal
and the output are shown in figures.

The input signal as generated by the sine wave is shown in figure.
The output of the multiplier is shown in figure and the spectral output is shown in figure.

It can be seen that the output of the multiplier in time domain is basically a sine wave but
doesn’t have the negative sides since they get cancelled out in the multiplication.

Figure 4.7

The spectral output of the spectrum is shown below. It can be seen that there are two
side components in spectrum. The components at fc + fm and –(fc + fm) can be seen along
with a central impulse.

Figure 4.8

Lab Manual of Analog & Digital Communication

If a DC component was present in the input waveform, then

y = km*(cos(2π(1,000)t) + Vdc)
2

The effect of adding a dc component to the input has the overall effect of raising the
amplitude of the 2 KHz component and decreases the 2 KHz component. However, for a
value of Vdc = 0.1V, the 1KHz component reduces and for any other increase in the Vdc
value, the 1KHz component increases.

Figure 4.9

I. Double Side-Band Suppressed Carrier Modulation

Figure shows the implementation of a DSB-SC signal. The Signals are at 1 kHz and 10 kHz.

Figure 4.10

Lab Manual of Analog & Digital Communication

The output is shown below. It can be seen that the output consists of just two side
bands at +(fc + fm) and the other at –(fc + fm) , i.e. at 9kHz and 11kHz.

Figure 4.11

By multiplying the carrier signal and the message signal, we achieve modulation.

Y*m(t) = [km cos (2π1000t)* cos (2π10000t)]

We observe the output to have no 10 KHz component i.e., the carrier is not present. The
output contains a band at 9 KHz (fc-fm) and a band at 11 KHz (fc + fm). Thus we observe a
double side band suppressed carrier. All the transmitted power is in the 2 sidebands.

Effect of Variations in Modulating and Carrier frequencies on DSB – SC signal.

By varying the carrier and message signal frequencies, we observe that the 2 sidebands move
according to equation fc ± fm.

Now, using a square wave as modulating signal, we see that DSBSC is still achieved.

The output from spectrum analyzer was slightly different from the theoretical output. In the
result from the spectrum analyzer, there is a small peak at frequency = 10kHz (the carrier
frequency) and other 2 peak at 0 and 1000 Hz. This may caused by the incorrectly calibrated
multiplier.

Next, the changes to the waveform parameters have been made and then the outputs have
been observed. And here are the changes that have been made

Lab Manual of Analog & Digital Communication

Figure 4.12

Amplitude Modulation
This experiment is the amplitude modulation for modulation index a = 1 and 0.5.
From the equation of the AM

y = km (1 + a ⋅ cos(2π (1000)t) ⋅ cos(2π (10000)t
The representation of the signal in both time-domain and frequency domain when km=1 for
a=1 and a=0.5 were found to be as shown in figures.
The experimental set up for generating an AM signal looks like this: -

Figure 4.12

Figure 4.13

The input waveform 50% modulated is shown in figure:

Figure 4.14

Lab Manual of Analog & Digital Communication

The output spectrum is shown below

Figure 4.15

It must be noted here that the A.M signal can be converted into a DSB-SC signal by
making the constant = 0.

The waveforms at various levels of modulation are shown in the following figures.

Lab Manual of Analog & Digital Communication

Figure 4.16

Figure 4.17

Lab Manual of Analog & Digital Communication

Figure 4.18

The results from the experiment were shown. The results from the experiment are pretty
much the same as in the theoretical ones except there are 2 other peaks at 0 and 1000 kHz.
This is the same as earlier experiment. The cause of this problem is probably the multiplier.

II. Two Tone Modulation

The last experiment in this section is the two tone modulation. In this experiment, the 2 kHz
signal had been added to the modulating signal in the above experiment. Theoretically, the
representation of the modulated signal in time-domain and frequency domain would have
been as in the figure below. In the figure, 1 kHz and 2 kHz signals were modulated with 10
kHz carrier.

Figure 4.19

Lab Manual of Analog & Digital Communication

The experimental setup is shown below.

Figure 4.20

The two-tone waveform before being amplitude modulated.

Figure 4.21

The two-tone signal is amplitude modulated using the same block model discussed in the
previous section. The output spectrum is shown in figure. In this case the signals of 1 kHz
and 2 kHz are modulated by a 10kHz carrier. The output spectrum is shown in figure

Lab Manual of Analog & Digital Communication

Figure 4.21

The result from the experiment was shown. The highest peak is at the carrier frequency as in
the theoretical result. But there were differences on the sidebands. In the figure from
MATLAB, both frequencies in the sidebands have the same magnitude, but from the
experiment, the components at 9000Hz and 11000Hz have higher magnitude than the
components at 8000Hz and 12000 Hz. There’re also many small peaks of about 1000Hz
apart in the experiment result. This might come from the incorrectly calibrated multiplier.

The final experiment in this section is to change the carrier frequency and the modulating
frequency. When the carrier frequency increases, the spectrum of the modulated signal is
expected to have the two sidebands centered at the new carrier frequency. And when one of
the two modulating signals changes in frequency, the spectrum of the output signal should
have two components move away from their original positions according to the change in
frequency. The result from the experiment was shown. Both change in carrier frequency and
modulating frequency is shown.

Lab Manual of Analog & Digital Communication

Experiment # 5

Introduction to Amplitude Modulation (MATLAB Implementation)

Objective

 To analyze the spectrum, in time and frequency domain, of Amplitude Modulation.

In this first part of the lab we will focus on a couple of simple examples and plot their
spectrum, in time and in frequency domain. In second part of this lab we will write the
code for Amplitude modulation with carrier and suppress carrier and then focus on two
tune modulation and at the end of this lab we will write a code for single side band.

Sketch the time and frequency domain representations (magnitude only) of the following

Cos 2πft f = 1kHz
The time and frequency domain of the input signal is shown as below.

CODE:
%% Time specifications:
Fs = 10000;
dt = 1/Fs; StopTime = 0.5;
t = (0:dt:StopTime-dt)';
N = size(t,1);
Fc = 1000;
x = cos(2*pi*Fc*t);

subplot(2,1,1)
plot(t,x);
axis([0 1/100 -1 1]); xlabel('Time'); ylabel('Magnitude')
%% Fourier Transform:
X = fftshift(fft(x));
%% Frequency specifications:
dF = Fs/N;
f = -Fs/2:dF:Fs/2-dF;
%% Plot the spectrum: subplot(2,1,2) plot(f,abs(X)/N); xlabel('Frequency (in
hertz)'); ylabel('Magnitude')
%%

B. Square wave period = 1msec, amplitude = 1v

Fs = 1000000;
dt = 1/Fs;
StopTime = 0.5;
t = (0:dt:StopTime-dt)'; N = size(t,1);
Fc = 1000;
x = SQUARE(2*3.14*Fc*t);

subplot(2,1,1)
plot(t,x);
axis([0 1/200 -2 2]); xlabel('Time'); ylabel('Magnitude');

%% Fourier Transform:
X = fftshift(fft(x));

%% Frequency specifications:
dF = Fs/N;
f = -Fs/2:dF:Fs/2-dF;

%% Plot the spectrum:
subplot(2,1,2) plot(f,abs(X)/N); axis([-100000 100000 0 0.5]);
xlabel('Frequency (in hertz)'); ylabel('Magnitude');

C. Cos2(2πft) f = 1kHz

Fs = 30000;
dt = 1/Fs;
StopTime = 0.5;
t = (0:dt:StopTime-dt)'; N = size(t,1);
Fc = 1000;
x = cos(2*pi*Fc*t); x=x.*x;

subplot(2,1,1)
plot(t,x);
xlabel('Time');
ylabel('Magnitude');
axis([0 1/100 -1 1]);
X = fftshift(fft(x));
dF = Fs/N;
f = -Fs/2:dF:Fs/2-dF; subplot(2,1,2) plot(f,abs(X)/N); axis([-5000
5000 0 0.75]) zoom on
xlabel('Frequency (in hertz)'); ylabel('Magnitude');

Experiment # 6

AMPLITUDE SHIFT KEYING

Aim: To generate and demodulate amplitude shift keyed (ASK) signal using MATLAB

Theory

Generation of ASK

Amplitude shift keying - ASK - is a modulation process, which imparts to a sinusoid two or more
discrete amplitude levels. These are related to the number of levels adopted by the digital message.
For a binary message sequence there are two levels, one of which is typically zero. The data rate is
a sub-multiple of the carrier frequency. Thus the modulated waveform consists of bursts of a
sinusoid. One of the disadvantages of ASK, compared with FSK and PSK, for example, is that it
has not got a constant envelope. This makes its processing (eg, power amplification) more
difficult, since linearity becomes an important factor. However, it does make for ease of
demodulation with an envelope detector.

Demodulation

ASK signal has a well defined envelope. Thus it is amenable to demodulation by an envelope
detector. Some sort of decision-making circuitry is necessary for detecting the message. The signal
is recovered by using a correlator and decision making circuitry is used to recover the binary
sequence.

Algorithm

Initialization commands

ASK modulation

1. Generate carrier signal.
2. Start FOR loop
3. Generate binary data, message signal(on-off form)
4. Generate ASK modulated signal.
5. Plot message signal and ASK modulated signal.
6. End FOR loop.
7. Plot the binary data and carrier.

ASK demodulation

1. Start FOR loop
2. Perform correlation of ASK signal with carrier to get decision variable
3. Make decision to get demodulated binary data. If x>0, choose ‘1’ else choose ‘0’
4. Plot the demodulated binary data.

Program

%ASK Modulation

clc;
clear all;
close all;
%GENERATE CARRIER SIGNAL
Tb=1; fc=10;
t=0:Tb/100:1;
c=sqrt(2/Tb)*sin(2*pi*fc*t);
%generate message signal
N=8;
m=rand(1,N);
t1=0;t2=Tb
for i=1:N
t=[t1:.01:t2]
if m(i)>0.5

m(i)=1;
m_s=ones(1,length(t));

else
m(i)=0;
m_s=zeros(1,length(t));

end
message(i,:)=m_s;
%product of carrier and message
ask_sig(i,:)=c.*m_s;
t1=t1+(Tb+.01);
t2=t2+(Tb+.01);
%plot the message and ASK signal
subplot(5,1,2);axis([0 N -2 2]);
plot(t,message(i,:),'r');
title('message signal');xlabel('t--->');ylabel('m(t)');
grid on hold on;
subplot(5,1,4);plot(t,ask_sig(i,:));
title('ASK signal');xlabel('t--->');ylabel('s(t)');grid on hold on
end
hold off
%Plot the carrier signal and input binary data
subplot(5,1,3);plot(t,c);
title('carrier signal');xlabel('t--->');ylabel('c(t)');grid on
subplot(5,1,1);stem(m);
title('binary data bits');xlabel('n--->');ylabel('b(n)');grid on

% ASK Demodulation

t1=0;t2=Tb
for i=1:N
t=[t1:Tb/100:t2]
%correlator
x=sum(c.*ask_sig(i,:));
%decision device
if x>0

demod(i)=1;
else
demod(i)=0;

end
t1=t1+(Tb+.01);
t2=t2+(Tb+.01);
end
%plot demodulated binary data bits
subplot(5,1,5);stem(demod);
title('ASK demodulated signal'); xlabel('n--->');ylabel('b(n)');grid
on

Model Graphs

Experiment # 7

PHASE SHIFT KEYING

Aim: To generate and demodulate phase shift keyed (PSK) signal using MATLAB

Generation of PSK signal

PSK is a digital modulation scheme that conveys data by changing, or modulating, the phase of
a reference signal (the carrier wave). PSK uses a finite number of phases, each assigned a unique
pattern of binary digits. Usually, each phase encodes an equal number of bits. Each pattern of
bits forms the symbol that is represented by the particular phase. The demodulator, which is
designed specifically for the symbol-set used by the modulator, determines the phase of the
received signal and maps it back to the symbol it represents, thus recovering the original data.

In a coherent binary PSK system, the pair of signal S1(t) and S2 (t) used to represent binary

symbols 1 & 0 are defined by

S1 (t) = √2Eb/ Tb Cos 2πfct
S2 (t) =√2Eb/Tb (2πfct+π) = - √ 2Eb/Tb Cos 2πfct where 0 ≤ t< Tb and
Eb = Transmitted signed energy for bit

The carrier frequency fc =n/Tb for some fixed integer n.

Algorithm

Initialization commands

PSK modulation

1. Generate carrier signal.
2. Start FOR loop
3. Generate binary data, message signal in polar form
4. Generate PSK modulated signal.
5. Plot message signal and PSK modulated signal.
6. End FOR loop.
7. Plot the binary data and carrier.

PSK demodulation

1. Start FOR loop
Perform correlation of PSK signal with carrier to get decision variable

2. Make decision to get demodulated binary data. If x>0, choose ‘1’ else choose ‘0’
3. Plot the demodulated binary data.

http://en.wikipedia.org/wiki/Digital
http://en.wikipedia.org/wiki/Modulation
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Phase_(waves)
http://en.wikipedia.org/wiki/Signal_(information_theory)
http://en.wikipedia.org/wiki/Carrier_wave
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Symbol_(data)
http://en.wikipedia.org/wiki/Demodulator

Program

% PSK modulation

clc;
clear all;
close all;
%GENERATE CARRIER SIGNAL
Tb=1;
t=0:Tb/100:Tb;
fc=2;
c=sqrt(2/Tb)*sin(2*pi*fc*t);
%generate message signal
N=8;
m=rand(1,N);
t1=0;t2=Tb
for i=1:N
t=[t1:.01:t2]
if m(i)>0.5

m(i)=1;
m_s=ones(1,length(t));

else
m(i)=0;
m_s=-1*ones(1,length(t));

end
message(i,:)=m_s;
%product of carrier and message signal
bpsk_sig(i,:)=c.*m_s;
%Plot the message and BPSK modulated signal
subplot(5,1,2);axis([0 N -2 2]);plot(t,message(i,:),'r');
title('message signal(POLAR form)');xlabel('t--->');ylabel('m(t)');
grid on; hold on;
subplot(5,1,4);plot(t,bpsk_sig(i,:));
title('BPSK signal');xlabel('t--->');ylabel('s(t)');
grid on; hold on;
t1=t1+1.01; t2=t2+1.01;
end
hold off
%plot the input binary data and carrier signal
subplot(5,1,1);stem(m);
title('binary data bits');xlabel('n--->');ylabel('b(n)');
grid on;
subplot(5,1,3);plot(t,c);
title('carrier signal');xlabel('t--->');ylabel('c(t)');
grid on;

% PSK Demodulation

t1=0;t2=Tb
for i=1:N
t=[t1:.01:t2]

%correlator
x=sum(c.*bpsk_sig(i,:));

%decision device
if x>0
demod(i)=1;

else
demod(i)=0;

end
t1=t1+1.01;
t2=t2+1.01;
end
%plot the demodulated data bits
subplot(5,1,5);stem(demod);
title('demodulated data');xlabel('n--->');ylabel('b(n)'); grid on

Modal Graphs

Experiment # 8

FREQUENCY SHIFT KEYING

Aim: To generate and demodulate frequency shift keyed (FSK) signal using MATLAB

Theory

Generation of FSK

Frequency- shift keying (FSK) is a frequency modulation scheme in which digital
information is transmitted through discrete frequency changes of a carrier wave. The
simplest FSK is binary FSK (BFSK). BFSK uses a pair of discrete frequencies to transmit
binary (0s and 1s) information. With this scheme, the "1" is called the mark frequency and
the "0" is called the space frequency.

In binary FSK system, symbol 1 & 0 are distinguished from each other by transmitting one
of the two sinusoidal waves that differ in frequency by a fixed amount.

Si (t) = √2E/Tb cos 2πf1t 0≤ t ≤Tb

0 elsewhere Where i=1, 2 &

Eb=Transmitted energy/bit
Transmitted freq= ƒi = (nc+i)/Tb, and n = constant (integer), Tb = bit interval
Symbol 1 is represented by S1 (t)
Symbol 0 is represented by S0 (t)

Algorithm

Initialization commands

FSK modulation

1. Generate two carriers signal.
2. Start FOR loop
3. Generate binary data, message signal and inverted message signal
4. Multiply carrier 1 with message signal and carrier 2 with inverted message signal
5. Perform addition to get the FSK modulated signal
6. Plot message signal and FSK modulated signal.
7. End FOR loop.
8. Plot the binary data and carriers.

FSK demodulation

1. Start FOR loop
2. Perform correlation of FSK modulated signal with carrier 1 and carrier 2 to get two

decision variables x1 and x2.

http://en.wikipedia.org/wiki/Frequency_modulation
http://en.wikipedia.org/wiki/Carrier_wave
http://en.wikipedia.org/wiki/Binary_numeral_system

3. Make decisionon x = x1-x2 to get demodulated binary data. If x>0, choose ‘1’ else
choose ‘0’.

4. Plot the demodulated binary data.

Program

% FSK Modulation

clc;
clear all;
close all;
%GENERATE CARRIER SIGNAL
Tb=1; fc1=2;fc2=5;
t=0:(Tb/100):Tb;
c1=sqrt(2/Tb)*sin(2*pi*fc1*t);
c2=sqrt(2/Tb)*sin(2*pi*fc2*t);
%generate message signal
N=8;
m=rand(1,N);
t1=0;t2=Tb
for i=1:N
t=[t1:(Tb/100):t2]
if m(i)>0.5
m(i)=1;
m_s=ones(1,length(t));
invm_s=zeros(1,length(t));

else
m(i)=0;
m_s=zeros(1,length(t));
invm_s=ones(1,length(t));

end
message(i,:)=m_s;

%Multiplier
fsk_sig1(i,:)=c1.*m_s;
fsk_sig2(i,:)=c2.*invm_s;
fsk=fsk_sig1+fsk_sig2;

%plotting the message signal and the modulated signal
subplot(3,2,2);axis([0 N -2 2]);plot(t,message(i,:),'r'); title('message
signal');xlabel('t---->');ylabel('m(t)');grid on;hold on;
subplot(3,2,5);plot(t,fsk(i,:));
title('FSK signal');xlabel('t---->');ylabel('s(t)');grid on;hold on;
t1=t1+(Tb+.01); t2=t2+(Tb+.01); end

hold off
%Plotting binary data bits and carrier signal
subplot(3,2,1);stem(m);
title('binary data');xlabel('n---->');
ylabel('b(n)');grid on;
subplot(3,2,3);plot(t,c1);
title('carrier signal-1');xlabel('t---->');ylabel('c1(t)');grid on;
subplot(3,2,4);plot(t,c2);
title('carrier signal-2');xlabel('t---->');ylabel('c2(t)');grid on;

% FSK Demodulation

t1=0;t2=Tb
for i=1:N
t=[t1:(Tb/100):t2]

%correlator
x1=sum(c1.*fsk_sig1(i,:));
x2=sum(c2.*fsk_sig2(i,:));
x=x1-x2;

%decision device
if x>0
demod(i)=1;

else
demod(i)=0;

end
t1=t1+(Tb+.01);
t2=t2+(Tb+.01);
end
%Plotting the demodulated data bits
subplot(3,2,6);stem(demod);
title(' demodulated data');xlabel('n---->');ylabel('b(n)'); grid on;

Modal Graphs

